Forces at Work: Beam Bridges

amandorupcountryBeam bridges are subject to the two basic forces that are in effect for all bridges. These forces are compression and tension. These forces are at work in a beam bridge in an arguably more direct manner than in other bridges. With a beam bridge, with its single deck, the deck itself is subject to both compression and tension. There are modifications to the deck which we’ll discuss in the future, but at its simplest, the deck is left to “deal” with both compressional and torsional stresses.

As you can see in the diagram above, the load puts weight on the deck, or beam. The abutments support the weight of the load. So where is the tension and compression in the beam itself?

simplebeam PBSIn this diagram you can see that when the load adds weight to the bridge, the bridge flexes slightly. This flex is caused by the weight causing a compressional stress on the top surface of the bridge. As the top surface compresses, the bottom surface is forced to stretch, or be subject to tensional stress. If the compressive force is too great, the bridge will buckle. If the tensional force is too great, the bridge will snap. If the forces can be balanced, the bridge will stand and function as it was designed to function.

My new book about the science of bridges is nearly done!

More:
More about bridges at PBS


Print pagePDF pageEmail page
%d bloggers like this: